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Abstract

According to the standard ASTM E2611 an impedance tube can be used to
measure the sound transmission and reflection losses in an absorption material.
However, application in a liquid medium in the low-frequency range presents
difficulties with respect to the size of the structure and the waveguide-related
distortion of the plane-wave propagation. In this paper a four-microphone im-
pedance tube for use in liquids in the low-frequency range, complying with the
transfer-matrix method for transmission-loss measurements, is presented. The
impedance tube is validated on the basis of research on an underwater, two-
microphone impedance tube. It is demonstrated that in the low-frequency range
the loudspeaker couples well into the plane-wave propagation. Furthermore, ex-
isting methods for measuring the group velocity and the complex wavenumber,
applicable to the impedance tube, were investigated and compared to the new
methods developed in this article. The results showed the best fits for the cross-
correlation and the new approach of amplitude matching, respectively, for the
cases of the velocity and the wavenumber measurements. Thus, the validated
impedance tube was used for acoustic measurements of metal-foam samples.
Problem-specific equations for calculating the dissipation coefficients of cavity-
backed samples were derived from the transfer matrix and the scattering matrix.
Stable results in agreement with the expected low absorption were obtained.
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attenuation, phase velocity

1. Introduction

For the effective use of absorption materials to dampen the noise in acous-
tic systems it is necessary to determine their ability to absorb sound energy.
Wang [1] investigated the underwater sound-absorption properties of a porous
metal impregnated with a viscous fluid, Sun and Hou [2] measured the sound
absorption of a rubber material with an underwater pulse tube, and Xu et al. [3]
studied the underwater performance of an air-saturated SiC foam and presen-
ted improvements in later work [4]. Impedance-tube-based methods, together
with other standardized test methods, offer the possibility of absorption meas-
urements in liquids. Implementation in the low-frequency range is particularly
demanding, especially in the liquid environment. While the market offers com-
mercial impedance-tube designs for use in a gaseous medium, the scope of use in
liquids is to a large extent still unexplored. The fluid-structure interaction can
distort the plane-wave propagation, which is the fundamental requirement for
the impedance-tube measurement methods. Research on a water-filled imped-
ance tube was conducted by Wilson et al. [5]. They investigated an impedance
tube based on ASTM E1050 [6], which is a two-microphone method with a
rigidly backed sample. Their work was concentrated on the pressure sensor’s
design, an analysis of waveguide effects and the corresponding restrictions due
to the wavefront curvature and the dispersion of the sound velocity.

Porous materials, like metal foams, have inferior absorption properties in
the low-frequency range, especially when backed by a rigid plate, as reported
by Han et al. [7] and Navacerrada et al. [8]. Therefore, measurements based on
the two-microphone impedance-tube design cannot provide useful results. Fur-
thermore, the two-microphone method does not permit transmission-loss meas-
urements, as only reflection can be observed. Accordingly, the four-microphone
method for a normal incidence, sound-transmission measurement with a cavity-
backed sample, as stated in ASTM E2611 [9], is more appropriate for this ap-
plication.

Several methods for the evaluation of acoustic properties using a four-micro-
phone impedance tube can be found in literature. The standard ASTM E2611 [9]
specifies the transfer-matrix method by Song and Bolton [10]. The transfer mat-
rix correlates the sound pressure and the particle velocity on each side of the
sample, and can be freely multiplied to evaluate the characteristics of multiple
absorption layers in series. The reflection and the transmission coefficient are
presented implicitly with four elements of the transfer matrix. Similarly, the
scattering-matrix method presented by Åbom [11] correlates the pressure amp-
litudes of the incident and reflected waves using the reflection and transmission
coefficients. The procedure for extracting the scattering-matrix elements is ana-
logous to the transfer-matrix method. Due to the explicitly written coefficients it
is convenient for analysing a single layer of the test sample, but a transfer-matrix
implementation is required for a further study of multiple layers, as reported
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by Feng [12]. In addition, Salissou and Penneton [13] revised the wave-field de-
composition method from Ho et al. [14] to avoid the corresponding assumptions
of sample symmetry. Like with the scattering matrix, the reflection coefficients
for both directions of the wave propagation and the transmission coefficient
are obtained explicitly, again causing a limitation with respect to the use for a
measured layer of porous material. The previously mentioned methods are all
two-load methods, requiring measurements of two different boundary conditions
of the wave termination. However, this is not the case for the method described
by Bonfiglio and Pompoli [15], who combined the transfer matrix and wave-field
decomposition into a single measurement approach. Salissou and Panneton [13]
observed that the results of a single measurement approach match with the two-
load methods, but only when the acoustic load is relatively absorbing. Looking
at the presented methods, the transfer-matrix method is the only one to char-
acterize the general material-absorption properties with ease of use for multiple
layers and different impedance-tube configurations.

The objective of this paper is to develop a four-microphone impedance tube
for low-frequency sound-absorption measurements in liquid media. Although
the standard ASTM E2611 [9] specifies a recommended design for the four-
microphone impedance tube, it is mainly intended for use in gaseous media.
No appropriate design for such a tube submerged in liquid was reported in the
literature. Therefore, based on an underwater impedance tube, a new four-
microphone instrument was developed, specifically for transmission-loss meas-
urements in a liquid medium in the frequency range 70-560 Hz. For reasons of
practicality, the transfer-matrix method is employed to evaluate the absorption
properties. The calculation of the problem-specific absorption of a cavity-backed
configuration under study in this paper requires a new approach for the reflec-
tion and transmission coefficients. This new approach consists of equations for
sound absorption, obtained using a correlation of the transfer matrix [10] and
the scattering matrix [12].

The pivotal acoustic parameters for the transmission-loss calculation include
the sound velocity and the complex wavenumber; therefore, it is best to measure
them on-site. For the case of the group sound velocity two new methods based
on the first mode of an open-end column and the cross-correlation are introduced
and compared to the basic method of the signal travel time and the minimum-
difference method adapted from the work of Wang et al. [16]. For the case of
the wavenumber, both numerical and analytical solutions are available. The
latter was adapted from Wilson et al. [5]. On the other hand, the numerical
evaluation of the wavenumber with the established methods of Peters et al. [17],
Hou et al. [18] and Han et al. [19] did not produce valid results. For the needs
of the new approach, amplitude-matching method is developed.

In Section 2 a short overview of the transfer-matrix method is followed by
a derivation of the coefficients for the cavity-backed configuration. The design
of the developed impedance tube is described and the operation of the experi-
mental setup is explained. For the purposes of the impedance tube’s validation
(Section 3) a further investigation of the acoustic phenomena, such as the tube
attenuation and the waveguide effect, is performed. This includes an overview
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of the methods for the measurements of the group sound velocity and the com-
plex wavenumber. Finally, a validated impedance tube is used for the acoustic
testing of the open-porous metal-foam samples, as presented in Section 4, and
the corresponding results are discussed in Section 5.

2. Transfer matrix method

The impedance tube based on the transfer-matrix method is presented in the
standard ASTM E2611 [9]. It is designed to measure the change in the pressure
field with a four-point measuring system and extract the acoustic absorption.
A simplified model of such a measuring system is shown in Fig. 1. The sound
waves are excited with a transducer on the left-hand side of the tube and the
waves, transmitted to the other side, are met with the boundary condition in
the form of an acoustic load. The sample of the absorption material divides
the propagated waves into two different pressure fields and the corresponding
amplitudes of the incident (A and C) and outbound waves (B and D):

p(x < 0) = A e−j k x +B e+j k x , (1)

p(x > d) = C e−j k x +D e+j k x , (2)

where d is the sample thickness and the wavenumber k = kr − j ki is a complex
number, with j being the imaginary unit. The real component kr = ω

c describes
the ratio of the angular frequency ω and the sound velocity c. The imaginary
component ki represents the attenuation constant, which includes the viscosity
and the thermal dissipation in the tube.

Loudspeaker Sensor 3

Sensor 4

Absorption 
material

Acoustic
load

A

B

C

D

ss

x1

x2 x3
x4

x

Sensor 1

Sensor 2

Figure 1: Impedance tube based on ASTM E2611.

The pressure amplitudes are calculated from the transfer functions Hn,ref
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measured at the position of the sensors with the numbers n = 1, 2, 3, 4 [9]:

A = j
H1,ref e+j k x2 −H2,ref e+j k x1

2 sin [k (x1 − x2)]
, (3)

B = j
H2,ref e−j k x1 −H1,ref e−j k x2

2 sin [k (x1 − x2)]
, (4)

C = j
H3,ref e+j k x4 −H4,ref e+j k x3

2 sin [k (x3 − x4)]
, (5)

D = j
H4,ref e−j k x3 −H3,ref e−j k x4

2 sin [k (x3 − x4)]
. (6)

The amplitudes obtained with Eq. (3)-(6) are used for the derivation of the
transfer-matrix elements, as described in ASTM E2611 [9]. The transfer matrix
relates the acoustic pressure p and the particle velocity u on each side of the
sample: [

p1 p2
u1 u2

]
x=0

=

[
T11 T12
T21 T22

] [
p1 p2
u1 u2

]
x=d

, (7)

where the indices 1 and 2 mark two different acoustic loads: the partially an-
echoic and the rigid termination. In this way no assumptions are made regard-
ing the sample symmetry. On the basis of the transfer matrix, the transmission
coefficient t and the reflection coefficient r can be predicted for multiple tube
termination configurations and the corresponding transmission loss TLn and
the absorption coefficient α can be calculated using the following equations:

TLn = 20 log10

∣∣∣∣1t
∣∣∣∣ , (8)

α = 1− |r|2 − |t|2 . (9)

Song and Bolton [10] offered solutions for the anechoic termination:

tanech =
2 ej k d

T11 + T12

ρ c + ρ c T21 + T22
, (10)

ranech =
T11 + T12

ρ c − ρ c T21 − T22
T11 + T12

ρ c + ρ c T21 + T22
, (11)

and the rigid termination, where the sample is backed by a rigid plate:

trigid = 0 , (12)

rrigid =
T11 − ρ c T21
T11 + ρ c T21

. (13)

Han et al. [7] and Navacerrada et al. [8] observed that dissipation in the low-
frequency range improves when the absorption material is backed by a cavity.
Therefore, the absorption of the sample in the cavity-backed configuration is of
interest. In this paper problem-specific equations are obtained with the correl-
ation of the transfer matrix and the scattering matrix.
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2.1. Cavity-backed formulation

The transfer matrix, although representing a general material property,
does not offer a straightforward solution for the absorption coefficient in the
cavity-backed configuration. The scattering matrix, as presented in the work of
Feng [12], is easier to employ. At this point it must be emphasized that with
a presupposed unsymmetrical sample, we have two different reflection coeffi-
cients rAB and rDC. The first one describing the reflection from the sample
towards the loudspeaker and second one the reflection from the sample towards
the tube’s termination. As identified by Salissou et al. [13], even for symmet-
rical samples, the assumption of rAB = rDC is too restrictive, as the boundary
conditions on the upstream and downstream sides of the sample are generally
different. Considering the acoustic loads 1 and 2, the scattering matrix couples
the pressure-field amplitudes in the following way [12]:[

B1 B2

C1 C2

]
=

[
rAB tDB

tAC rDC

] [
A1 A2

D1 D2

]
. (14)

Based on the scattering-matrix elements Feng [12] obtained the dissipation for
the configuration of the cavity with a rigid termination:

rcavity = rAB +
t2 e−2 j k xt

1− rDC e−2 j k xt
, (15)

where xt represents the location of the termination plate in the impedance tube’s
coordinate system. In contrast to the reflection, the transmission coefficient
t for both sides of the sample can be unified on the basis of the reciprocity
principle [10], yielding t = tAC = tDB. The corresponding transmission loss
for the single transition of the wave through the absorption material can be
obtained by inserting t into Eq. 8. Since the dissipation between the tube’s
input and output sound waves is of interest, the transmission loss is already
incorporated into rcavity, making αcavity = 1− |rcavity|2.

Assuming that the transfer-matrix elements are known, they can be used
to obtain the absorption coefficient for the cavity-backed sample on the basis
of Eq. 15. Beforehand, the correlation between the scattering matrix, meaning
the unknown coefficients rAB, rDC and t, and the transfer matrix, must be
derived. This is based on observing the unit input wave in two different load
configurations, i.e., the rigid and anechoic termination. This accounts for A1 =
1, D1 = C e−2 j k xt for the first and A2 = 1, D2 = 0 for the second case.
Inserting these amplitudes into Eq. 14, the corresponding amplitudes B and C
for each load can be obtained. The amplitudes are thus defined as a function
of rAB, rDC and t, and can be used to evaluate the pressure and velocity on the
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front and back surfaces of the sample:

pi(x = 0) = Ai +Bi , (16)

ui(x = 0) =
Ai −Bi
ρ c

, (17)

pi(x = d) = Ci e−j k d +Di ej k d , (18)

ui(x = d) =
Ci e−j k d −Di ej k d

ρ c
, (19)

where i represents load case 1 or 2. Inserting the evaluated pressures and velo-
cities into Eq. 7 and solving for the coefficients yields:

rAB =
T11 + 1

ρ c T12 − ρ c T21 − T22
T11 + 1

ρ c T12 + ρ c T21 + T22
, (20)

rDC = e2 j k d
−T11 + 1

ρ c T12 − ρ c T21 + T22

T11 + 1
ρ c T12 + ρ c T21 + T22

, (21)

tAC = 2 ej k d
1

T11 + 1
ρ c T12 + ρ c T21 + T22

, (22)

tDB = 2 ej k d
T11 T22 − T12 T21

T11 + 1
ρ c T12 + ρ c T21 + T22

, (23)

where T12 T12 − T12 T12 = 1 and consequently tAC = tDB , on the basis of the
reciprocity principle. Finally, the coefficients can be inserted into Eq. 15 for
the calculation of the absorption coefficient . Thus, combining the transfer and
scattering matrices we derived a formulation for the dissipation parameters in
the cavity-backed configuration. The stated formulation will be used to analyse
the results of the measurements on the metal foams presented in this paper. It is
understandable that the accuracy of the measured transfer functions Hn,ref and
therefore the calculated transfer-matrix elements and the dissipation coefficients
depend on the design of the impedance tube.

2.2. Impedance tube

The instrument design for the low-frequency impedance tube submerged in a
liquid is subjected to problem-specific construction requirements. In particular,
the distance between the sensors is associated with the accuracy of the measure-
ments. As reported by Bodén and Åbom [20] the transfer functions are the least
sensitive to external interferences when the distance between the sensors s equals
a quarter of a wavelength. Peng et al. [21] further investigated the fact that an
error of the same extent can be guaranteed in the interval 0.05 c < f s < 0.4 c,
with ASTM E2611 [9] expanding the lower limit to 0.01 c < f s < 0.4 c

A standardized impedance tube must also fulfil the assumption of a plane-
wave distribution, which might become distorted in a liquid-immersed tube
due to the fluid-structure interaction. The sound pressure excites the elastic
waves in the tube wall, which are accompanied by radial particle oscillation
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and wavefront curvature. In order to avoid the distortion of the plane waves
the tube wall must be acoustically rigid. Del Grosso [22] and Baik et al. [23]
studied the axial wave propagation within liquid-filled cylinders with elastic
walls of finite thickness in order to obtain the characteristic equation for axi-
symmetric modes. Del Grosso [22] reported that a less than 1 % dispersion in the
fundamental mode can be achieved with a wall thickness approaching the value
of inner tube radius. Wilson et al. [5] further observed, based on measurements
in a water-filled impedance tube, that the deviation between the pressure in the
tube axis and the pressure at the wall does not exceed 1 % in the low-frequency
range of the fundamental mode.

The designed impedance tube is shown in Fig. 2. It represents a thick-walled
structural steel tube of inner diameter 79 mm, wall thickness 40 mm and length
3 m. The distance between the sensor s = 1 m limits the usable frequency range
to 70-560 Hz. The steel’s rigidity was maintained by fabricating the tube entirely
from one piece. Additional flanges on each side of tube enable the mounting of
a loudspeaker and a 40 -mm-thick termination plate.

2.3. Experimental setup

The measurement scheme for the impedance-tube test station is presented
in Fig. 2. For the purposes of easy handling of the samples, the entire assembly
was submerged into the liquid medium, i.e., Nynas Nytro 10XN transformer
oil. The pulse signal, generated in the LabVIEW programming environment,
was applied to the system as an excitation signal. Using the NI 9263 module
and a Renkforce PA MP-2000 RMS amplifier, the signal was transmitted to a
DNH Aqua-30 loudspeaker with a uniform power distribution over a frequency
of 90 Hz. The pressure response was obtained with hermetically sealed PCB
106B52 pressure sensors at four measuring points along the tube. The sensors
have a steel membrane to enforce the tube’s rigidity and provide a high mech-
anical input impedance; therefore, avoiding the perturbation of the pressure
field. The signals were transferred to the computer by the NI 9234 module for
further post-processing. The oil temperature was monitored with a resistance
thermometer (RTD) through the NI 9219 input module.

The impedance tube was backed by a thick plate, which was fixed onto the
tube flange in the case of a rigid termination. For the second load configuration,
which is a partially anechoic termination, the plate was translated in the axial
direction to create a decompression slot δ = 5 mm (Fig. 2).

3. Acoustic phenomena in impedance tube

Acoustic phenomena, such as the wavefront curvature, the sound attenu-
ation and the dispersion of the sound velocity, can be observed in acoustic waves
propagating through cylinders due to the fluid-structure interaction. Before con-
ducting the experiment we ensured that the measurement system conforms to
the condition of a plane-wave distribution and calculated any unknown sound
velocity and dissipation characteristics of the transformer oil. The wave num-
ber, and consequently the sound velocity itself, is a fundamental parameter in
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ComputerNI 9263
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PCB 106B52DNHAqua-30 Nynas Nytro 10XNSteel tube TerminationMetal-foam
sample

Figure 2: Experimental setup with the impedance tube submerged in transformer oil. Excit-
ation, pressure and temperature signals are monitored using the output module NI 9263 and
the input modules NI 9234 and NI 9219, respectively. Different load configurations can be
achieved with the decompression slot δ.

the derivation of the pressure-field amplitudes. As such data is not specified for
transformer oil, it needs to be determined with an experiment.

Transformer oil is a dispersive medium; therefore, the frequency-dependent
phase velocity c0, defined as the real component of ω

k , can be detected. On the
other hand, the group velocity c1, meaning the velocity at which the pulse signal
is propagated in the medium, is also of interest, especially for a theoretical for-
mulation of the tube attenuation and an investigation of the waveguide effects.
The latter is required to show that in the low-frequency range for a given tube
design no problems with a disruption of plane-wave propagation arise.

3.1. Group sound velocity

The group sound velocity can be easily deduced from measured pressure
signals in either the time or frequency domain. Four methods were tested, which
can be implemented without any further changes to the existing measurement
system. These methods include an open-end column natural modes analysis, a
manual extraction of the time difference between the signals, a cross-correlation
of the signals and the minimum difference between the frequencies.

The first approach is the frequency-domain method based on the natural
modes of the open-end column. It is the only exception to using standard
measurements, as the loudspeaker needs to be decoupled from the impedance
tube to provide the appropriate boundary condition. The fluid inside the tube
is excited from a distance and thus the first natural frequency f1 of the open-
end column can be obtained, followed by the velocity c1 = 4 (l + l′) f1, where
l is the tube’s length and l′ is the tube’s end correction. The latter is used to
compensate for the actual acoustic length, which is greater than the physical
length due to radiation. The end correction in the form of l′ = 0.8 r can be used
for the case of an infinitely flanged rigid-walled cylinder, as reported by Silva et
al. [24] and Ogawa et al. [25]. The equivalent formula can be applied for higher
harmonics (odd multiples). The resultant velocity depends on the accuracy of
the open-end condition; therefore, the procedure was repeated while increasing
the distance between the tube flange and the loudspeaker diaphragm h until the
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c1 value converged at h = 40 mm. Fig. 3 shows the results in comparison with
other methods.
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Figure 3: Comparison of different methods for the group sound-velocity determination as a
function of the loudspeaker-flange distance.

The time-difference method is a calculation of the amount of time the impulse
signal needs to travel the distance between two sensors. One such response
measurement is presented in Fig. 4. It is recommended to use a high sampling
frequency, otherwise it is hard to evaluate the exact time for the signal reaching
the sensor’s position. Specifically, signals were sampled with a frequency of
25.6 kHz, and the results deviate by as much as 20 m/s (Fig. 3).
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Figure 4: Pressure signals measured using sensors at the corresponding location. Increased
pressure amplitude at sensor 4 is caused by the coinciding incident and reflected wave due to
the proximity of the tube termination.

The next method is based on comparing two signals with a cross-correlation
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analysis. The correlation function is calculated according to the formula∫ tmax

0
p1(t) p2(t + τ) dt, where p1 and p2 are the pressure signals at positions

1 and 2, respectively. The time of the correlation function peak corresponds to
the travelling time of the signal between the specified positions. The peak of
the function is clearly defined (Fig. 5), even though the signals are somewhat
distorted due to the medium’s dispersivity. Only the wave propagating toward
the tube termination before the onset of the reflection can be taken into account.
With regard to the Fig. 4 time of the wave reflection can be approximated at
about 0.00245 s, that is before reflection related increased pressure amplitude
at location of the sensor 4. Therefore only signals up to 0.00245 s from sensors
1, 2 and 3 can be used with cross-correlation method. The accuracy of the
approximated time of the signal reflection is not crucial. Fig. 3 shows that this
method gives more accurate results than the previous two. On the other hand,
it requires a specific selection of the signal’s time interval.
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Figure 5: Cross-correlation function of the signals obtained with sensors 1 and 2.

The final group-velocity-measurement method is the minimum-frequencies-
difference method, adapted from the work of Wang et al. [16]. The velocity
is calculated using equation c1 = 2 l1 ∆f , where l1 is the distance between
the first sensor and the tube termination. The parameter ∆f represents the
frequency difference between two successive minima of the pressure amplitudes’

ratio log
∣∣∣P1

P2

∣∣∣, with P1 being the Fourier transform of the pressure from the first

sensor and P2 from the second sensor. Thus, the acquired velocity has a value
similar to the cross-correlation method, but is not completely independent of
the loudspeaker’s boundary condition, as seen in Fig. 3.

Overall, the cross-correlation method proved to be the most accurate with
respect to the variable location of the loudspeaker and is used in our further
analysis. Specifically for the transformer oil, the group velocity is 1369 m/s at
25.4°C. During the analysis the sensor positions were assumed to be fixed at
physical positions. This does not necessarily coincide with the acoustic center
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of the sensors [26], but for large wavelengths the deviations are negligible.

3.2. Waveguide effects

Under the influence of the waveguide dynamics, fundamental and higher
modes are excited in the tube. Following the notation of Del Grosso [22], the
axi-symmetric modes in the tube with elastic walls of finite thickness are denoted
ETm, where m refers to the mode order. The fundamental mode ET0 has a
nearly plane wavefront and causes little dispersion and radial particle motion.
In contrast, the next mode ET1 has a more pronounced wavefront curvature
and more radial displacement [5]. The transfer-matrix method requires plane-
wave propagation; therefore, ET1 and higher modes should not be generated.
To check whether the loudspeaker is an appropriate excitation mechanism and
the tube wall is sufficiently rigid, the speed-of-sound dispersion was analysed.
Each individual mode m has a corresponding phase velocity c0m, which can be
obtained with the characteristic equation of Del Grosso [22] or Baik et al. [23].
The problem-specific parameters used to solve the characteristic equation are
detailed in Tab. 1 and the results are shown in Fig. 6. The latter confirms that
both ET0 and ET1 reach to the low frequency range.

Table 1: Material parameters of the liquid medium and the solid wall for the waveguide’s
decomposition: inner tube radius b, outer tube radius d, transformer-oil density ρl, steel
density ρw, group sound velocity c1, longitudinal and shear sound velocity in steel cl and cs,
respectively.

Transformer oil Steel tube

b = 39.5 mm ρw = 7850 kg/m3

d = 79.5 mm cl = 5960 m/s
ρl = 855.76 kg/m3 cs = 3235 m/s
c1 = 1369 m/s

In order to prevent ET1 excitation, the mismatch between the sound source
wave’s propagation and the ET1 modal shape must be provided. Although the
back-enclosed speaker can be considered to have an acoustic response similar
to a monopole with spherical wave propagation, no separated wavefronts with
different sound velocities, as reported by Lafleur and Shields [27], could be
observed from our measurements. Providing that mode ET1 was in fact excited,
its amplitude is negligible. Furthermore, in the frequency region of interest both
the axial and radial particle displacements of ET1 (Fig. 7), although larger than
that of ET0, are much less problematic than reported for higher frequencies [23].
As shown in Fig. 7 the particle-displacement dispersion in ET1 does not exceed
a value of 0.01 in the axial direction and 0.2 in the radial direction at 560 Hz,
which is the highest frequency in the range of interest. On the contrary, a ten-
times-higher frequency means multiple times higher radial dispersion and an
even more significant axial dispersion.
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ET0

ET1

ET2 ET3 ET4 ET5

Figure 6: Normalized phase velocity for axi-symmetric modes ET0–ET5. With a higher
frequency the c0m of all the modes converges to c1 making the tube dynamics independent of
the wall thickness.

3.3. Tube attenuation

Viscosity losses, thermal dissipation mechanisms and molecular relaxation
cause an exponential decrease in the pressure amplitude throughout the wave
propagation. This phenomenon is called attenuation. In an air-filled impedance
tube the attenuation-related dissipation can be neglected due to relatively small
distances between the sensors and consequently the overall more compact size
of the tube. In contrast, the wavelengths in the liquid medium are many times
longer, requiring larger tube dimensions. Since the metal-foam samples are
expected to have a low absorption capacity [7, 3] all the possible dissipation
mechanisms that might influence the results must be considered.

Attenuation is characterized by an imaginary component of the complex
wavenumber ki. The real component kr corresponds to the frequency-dependent
phase velocity c0. For the case of the underwater impedance tube, Wilson et
al. [5] approximated the complex wavenumber using the following equation:

k =
ω

c1
+ (1− j)αw , (24)

where αw represents the viscous losses in the fluid-structure interaction layer at
the tube wall with inner radius b:

αw =
1

b

√
µω

2 ρ c21
, (25)

with µ being dynamic viscosity of fluid. In this analytical formulation the bulk
fluid losses are neglected, as are the thermal losses in the visco-thermal wall
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Figure 7: Comparison of the normalized radial profile of the particle displacements for modes
ET0 and ET1 at 560 Hz, and ET1 at 5000 Hz, obtained according to the definition by Lafleur
and Shields [27]. The abscissa represents the radial position r normalized by the inner-
tube radius b, and the ordinate represents the circumference-to-center ratio of the particle
displacement, where Az is the amplitude of the axial displacement and Ar is the amplitude
of the radial displacement; a) Axial particle displacement normalized amplitude, b) Radial
particle displacement normalized amplitude.

layer. Additionally, the equation assumes a small phase shift of the wavenum-
ber ω

c1
� αw. Furthermore, the effects of wall roughness, local discontinuities

in geometry and potential oil impurities cannot be predicted with an analyt-
ical equation. Therefore, it is more reliable to measure the tube’s attenuation
constant.

Multiple methods for the numerical evaluation of the tube attenuation from
impedance tube measurements can be found in the literature, including Peters et
al. [17], Hou et al. [18] and Han et al. [19]. Peters and Petit [17] further developed
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the cross-correlation analysis mentioned in Section 3.1 to include the phase shift
and extract the phase velocity, mainly for ultrasound. It requires a measurement
of the pulse signal without any reflection and a spectral analysis of the measured
response. When implementing this method in an impedance tube only the time
signals before the excitation pulse reaching the tube termination were taken into
account and then padded with zeros in order to keep the frequency resolution
of 0.5 Hz. The attenuation coefficient and the phase velocity for sensors n and
n+ 1 are then defined as [17]:

ki(f) = −
log
∣∣∣Pn+1(f)
Pn(f)

∣∣∣
|xn+1 − xn|

, (26)

c0(f) = − 2π f |xn+1 − xn|

Arg
(
Pn+1(f) e2 jπ f τ

Pn(f)

)
− 2π f τ

, (27)

with Pn representing the Fourier transform of the pressure signal from the sensor
n and xn marking its position. The resultant values are evident from Fig. 8.

A basic iterative method for attenuation determination using a four-microphone
tube is presented in the work of Hou and Bolton [18]. They used the meas-
urement of an empty impedance tube, modelling the partial tube dissipation
between sensors 2 and 3 as an absorption material. Implementing the standard
transfer matrix and the equation for the propagation wavenumber in material
k′ = 1

d cos−1 T11 [9] into an iterative algorithm, the output k′ was substituted
into input k until the values converged. Although the method is straightfor-
ward the solution depends on the assumed material thickness and it leads to
particularly unsteady results in our case, without any detectable trend.

Another numerical evaluation of the attenuation was presented by Han et
al. [19]. The attenuation coefficient was obtained by closing the tube with a rigid
termination, measuring the transfer function and comparing it to the theoretical
value using the two-microphone method [6]. This is based on the assumption
that rigid termination results in total reflection r = 1, which is very difficult
to provide in liquids. Even though our own impedance-tube design includes a
thick back plate with the appropriate sealing, an infinite impedance was not
achieved.

Purposely excluding the rigid boundary condition from the wavenumber de-
termination process, we concentrated on the pressure amplitudes A, B, C and
D, with the first pair defining the upstream pressure field and the second pair
the downstream field (Fig. 1). Providing the impedance tube is empty, meaning
without any absorption material in between sensor 2 and 3, single pressure field
can be observed inside the tube. Therefore, the pressure amplitude A of an
incident wave, measured with sensors 1 and 2, should be equal to the pressure
amplitude C of the same incident wave, measured with sensors 3 and 4. This
also applies analogously to the pressure amplitudes of a reflected wave, namely
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amplitudes B and D. Implementing Eq. (3)-(6) it follows that:

H1,ref e+j k x2 −H2,ref e+j k x1

2 sin [k (x1 − x2)]
=
H3,ref e+j k x4 −H4,ref e+j k x3

2 sin [k (x3 − x4)]
, (28)

H2,ref e−j k x1 −H1,ref e−j k x2

2 sin [k (x1 − x2)]
=
H4,ref e−j k x3 −H3,ref e−j k x4

2 sin [k (x3 − x4)]
. (29)

Numerically solving for kr and ki, the results shown in Fig. 8 were obtained. In
comparison to other methods it can be observed that the measurement fits well
with the analytical equation of Wilson et al. [5] for the case of the attenuation
constant, with a mean absolute difference of 0.00468 Np/m since the analytical
solution underestimates the dissipation. In contrast, implementation of the
method by Peters et al. [17] was not successful. Both plots by Peters also have
a reverse gradient compared to the others and depend on the chosen length of
the time signal.

In the lower frequency range up to 90 Hz the measured wavenumber in-
consistencies are due to the speaker’s non-uniform power, especially under the
pressure of the loudspeaker-tube coupling. Comparing the result to c00 by ET0
(Fig. 6) it is clear that the measurements show a significant difference between
the group and the phase velocity. This is due to the fact that in Fig. 6 the vis-
cosity and the thermal losses are neglected, as is the damping associated with
radiation into the tube’s surrounding liquid.

Fig. 8 shows a zero value of the measured attenuation constant and the cor-
responding fluctuation of the phase velocity at 216 Hz. This phenomenon coin-
cidences with the symmetrical mode presented in Fig. 9, where the loudspeaker
and the termination plate excite the fluid in such a way that the monopolar res-
onance displacement is formed, as presented by Yang et al. [28]. The equivalent
would be a tube with two pistons on each side, exciting the fluid in anti-phase.
The distinct shape of phase velocity curve (Fig. 8b) is equal to that of the real
component of complex effective mass in the vicinity of monopolar resonance,
obtained by Yang et al. [28]. In monopolar mode of pressure the fluid volume
oscillates, while the center of mass remains fixed, causing zero value of the real
components of both effective bulk modulus K and effective mass density ρ.

Consequently, the effective wavenumber k = ω
√

ρ

K
becomes fully real, while

imaginary component of the wavenumber becomes null. This becomes apparent
in form of the attenuation constant with zero value at 216 Hz.

4. Porous material absorption properties

The validated impedance tube was used to measure the absorption of an
open-cell metal foam. Three metal-foam samples with about the same porosity
(over 90 %) and three different pore sizes were tested, labelling them foam A,
foam B and foam C. More detailed properties are given in Tab. 2. Their porous
structure is shown in Fig. 10.

Measurements were conducted according to the two-load standard method [9].
In this way any assumption of sample symmetry was avoided. The samples were
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Figure 8: Complex wavenumber components obtained with different methods, Wilson: ana-
lytical equation [5], Peters: broadband spectroscopy method [17], Measurement: amplitude-
matching method (A = C and B = D); a) Attenuation coefficient, b) Phase sound velocity.

impregnated with transformer oil to avoid any air bubbles and inserted into the
middle of the tube. There they were clamped down through the tube wall with
sealed screws.

5. Results and discussion

Based on the measurements without foam, the reflection coefficient of ter-
mination can be calculated by comparing the reflected and incident waves at
the termination location xt (Fig. 1):

r =
D

C
e2 j k xt . (30)
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Figure 9: Pressure distribution along the x-axis of the tube at 216 Hz. It should be noted that
the coordinate system’s origin does not coincidence with tube’s center.

Table 2: Characteristics of metal-foam samples. Samples have a thickness of 30 mm and a
diameter of 79 mm.

Label Pore size

A 1,4 mm (20 PPI)
B 0,8 mm (30 PPI)
C 0,4 mm (60 PPI)

A B C

Figure 10: Metal-foam samples and corresponding labels.

As can be seen in Fig. 11 the termination configuration δ = 0 is close to being
acoustically rigid, but not completely. The measurement with the decompres-
sion slot shows the effective dissipation around a frequency of 200 Hz, and the
difference between the two loads becomes smaller with higher frequency. As
reported by Salissou and Panneton [13] more accurate results are achieved with
the combination of two loads that have distinctively different reflection proper-
ties. The best combination would be a combination of a rigid and an anechoic
termination. No such boundary conditions could be provided, since they are
not feasible in a liquid medium. However, Salissou and Panneton [13] obtained
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steady results with combination of a rigid and an absorbent termination in
the frequency range where corresponding reflection coefficients differed for more
than 10 %. Such condition is also met with our terminations (Fig. 11).

100 200 300 400 500
Frequency [Hz]

0.2

0.4

0.6

0.8

1.0
r

= 0
= 5 mm

Figure 11: Reflection coefficient of the tube’s termination for each acoustic load, δ = 0:
decompression slot closed, δ = 5 mm: decompression slot open.

Then, following the standard procedure, the measurements with the metal-
foam samples were conducted. The transmission loss and the absorption coef-
ficient were calculated with the new formulation for the cavity-backed config-
uration. The results for all the samples are compared in Fig. 12. Contrary
to expectations, foam A has better absorption than foam B. Foam C provides
multiple times higher transmission losses than both foam A and foam B, which
can be associated with larger surface in contact with fluid and corresponding
viscous and thermal dissipation. On the contrary, foam C does not exhibit such
superior absorption coefficient, which indicates that major part of incident wave
gets reflected due to the small pores and the high pore density. The exception
is frequency range in vicinity of 300 Hz, where mode shape imposes highest
pressure at location of the foam. This maximises part of incident wave that is
transmitted through the foam and subjected to the transmission losses. A plot
of the absorption due to the attenuation is added in Fig. 12b.

Effects of different types of the terminations on α, obtained with Eq. (11), (13)
and (15), are presented on Fig. 13. Absorption of both cavity backed sample
and sample in the tube with anechoic termination is heavily dependent on the
frequency and the tube’s pressure mode that frequency corresponds to. On the
contrary, rigid termination does not cause such fluctuations since foam is always
positioned at the pressure maximum.

Discussed results were obtained according to the two-load method, which
requires measurements with two different boundary conditions. Each separ-
ate boundary condition can also be examined with one-load method [9] under
assumption of symmetry and reciprocity of the transfer matrix. On Fig. 14
the two-load method is compared to the one-load method for the tube with
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Figure 12: Measured dissipation in samples for the case of cavity-backed samples; a) Trans-
mission loss, b) Absorption coefficient.

and without decompression slot. Similar results are obtained with all methods.
Highest transmission loss is generated by one-load method with decompression
slot (δ = 5 mm). Without decompression slot TLn reaches lowest values and
experiences sudden dip at 237 Hz. Two-load method produces the most steady
results and predominantly fits in between the one-load method lines.

6. Conclusions

The implementation of a low-frequency impedance tube in a liquid medium
was investigated. The transfer-matrix method was chosen for the absorption
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Figure 13: Absorption dependency on the tube’s termination for foam C.
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Figure 14: Comparison of two-load method and one-load method for foam C in the cavity-
backed configuration. δ indicates type of tube’s termination.

measurement technique due to the reported low absorption of porous materials
in the low-frequency range and the general applicability of the transfer matrix
itself. The corresponding tube design requires a cavity-backed configuration of
the sample positioning. As the ASTM E2611 standard’s recommendations do
not account for all phenomena in underwater acoustics, a new instrument for
use in liquid media was developed and validated in transformer oil. Specifically
for cavity-backed configuration measurements’ analysis a new set of equations
for reflection and transmission coefficients was also derived, combining the for-
mulations of the transfer matrix and the scattering matrix.

The impedance tube’s validation process consists of sound-velocity meas-
urements, waveguide-effect investigations and tube-attenuation determinations.
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Since the group velocity of transformer oil is not generally known, a set of
methods applicable to the impedance tube were tested. Two of them, i.e., the
method of natural modes and the cross-correlation method, are introduced in
this paper. The results show that the most reliable group velocity calculation
is cross-correlation, but only when the appropriate lengths of the time signals
are provided, i.e., without any reflection. The natural modes method should
also be a good fit, but would require the use of a different length correction l′

for a finite size flange, as the method gives a higher value of the velocity than
expected.

Employing the measured group velocity, a waveguide-effects analysis was
conducted, where axi-symmetric modes of the elastic tube were taken into ac-
count. Finding two modes, ET0 and ET1, present in the frequency range of
interest, it was shown that a loudspeaker with a spherical wave propagation
does not excite the mode ET1 and is therefore appropriate for plane-wave ex-
citation in the low-frequency range.

The impedance-tube design with a four-point measuring system is also con-
venient for phase-velocity and tube-attenuation measurements. As the estab-
lished methods for complex-wavenumber measurements did not produce accur-
ate results, a new method of amplitude matching was developed. Any assump-
tions about an absolutely rigid termination were avoided, since such a boundary
condition is very difficult to achieve in a liquid environment, as the measure-
ments showed. A mismatch between the analytical and numerical methods was
observed, confirming that the pivotal acoustic parameters of the liquid media
should be determined on-site.

Finally, with the validated impedance tube, measurements of the metal
foam’s absorption in transformer oil were conducted. It was observed that ab-
sorption properties of the samples exhibit heavy dependence on pressure mode
in cavity backed and anechoic configuration. This explains the importance of
proper position of the absorption material in low frequency range. Comparison
between one-load and two-load method showed that one-load assumptions cause
local deviations.
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